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Abstract

We describe a new method for estimating adequate-contact matrices that describe the

mixing and the probability of disease transmission between age groups. Adequate-contact

matrices can be used to estimate age-dependent forces of infection in age-structured, com-

partmental models for the study of the transmission dynamics of infectious diseases. The

interactions among individuals determine the course of an epidemic through a population.

To capture these elements of reality, we use the social network for the synthetic city of

Portland, Oregon to study and identify mixing patterns. The mixing within the popu-

lation consists of two groups, children and adults. Children interact with other children

close to their own age, while adults interact with a wider range of age groups and their

durations of a typical contact are shorter than a typical contact between children. Our
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results show that children are more likely to have adequate contacts than adults. Un-

derstanding mixing in the population is a key factor in using mathematical modeling to

better understand disease spread and the best means of containing an outbreak.

1 Introduction

A major determinant in understanding the spread of diseases is our lack of data on the mixing

patterns in the population. It is important to appropriately account for the formation of

contacts to accurately understand disease spread and develop control measures. Correctly

accounting for the mixing patterns in a population may be crucial to accurately predict the

path of a disease and thus where the outbreak could be intercepted most effectively.

Epidemiology models can estimate the likelihood of a disease outbreak based on the repro-

ductive number. The reproductive number is the average number of secondary cases produced

by a “typical” infectious individual during its infectious period (van den Driessche & Watmough

2002). The rate at which infectious individuals spread the disease depends on the number of

adequate contacts between infecteds and susceptibles. Thus, if we determine the mixing pat-

terns in the population, we can obtain better estimates of the reproductive number. This result

can help modelers predict the severity of an outbreak and the best means of containing it.

Because of the recognition that heterogeneous contact patterns govern sexually transmitted

diseases (STDs), several techniques have been developed to incorporate heterogeneous mixing in

mathematical models for STDs. Numerous models have studied the effects of different mixing
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functions or mixing matrices in the form of compartmental models (Anderson et al. 1990;

Blythe & Castillo-Chavez 1989; Hyman & Stanley 1988, 1989; Hyman & Li 1996, 1997; Knolle

2004) and network models (Newman 2002; Zaric 2002). Some of the techniques developed

to incorporate non-random mixing into epidemic models include restricted mixing (Jacquez et

al. 1988), proportionate mixing (Hethcote & Van Ark, 1987; Nold 1980), preferred mixing

(Hethcote & Yorke 1984), selective mixing (Koopman et al. 1989), and non-proportionate

mixing (Anderson & May 1991). These techniques involve defining an n × n matrix, the

elements of which represent adequate contacts between individuals in age group i and age group

j, where adequate contacts are those that would result in the transfer of infection. However,

these matrices require knowledge of the forces of infection, the mixing structure, and the steady

states of the endemic disease. The forces of infection are usually estimated using serological

data, but these data are often not available for many diseases.

Survey studies of mixing patterns can be useful tools in understanding disease spread.

Edmunds et al. (1997) studied a sample of 65 individuals and estimated contact patterns

that could lead to the spread of airborne infections. They concluded that older adults mix

with themselves and all other age groups at the same rate, and that younger adults do not.

They also found that people have a different mixing pattern during the weekend than on

weekdays. However, some of the limitations of this study are the sample size, the lack of

quantification of duration of contact, and the fact that all the participants were adults, even

though a great number of diseases are transmitted by children. A review article by Wallinga

et al. (1999) discussed the use of networks in developing contact patterns and the spread of
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airborne infectious diseases. They noted that more studies are needed to better understand

contact patterns to predict disease spread.

We use a social network generated by the synthetic population of Portland, Oregon, consist-

ing of more than 1.6 million individuals to determine mixing patterns between age groups. We

analyze the simulated movement of these individuals and determine the likelihood of infection.

The data used in this study such as number of contacts and duration of contact exhibits aspects

of behavior thought to be important in determining patterns of infection. Furthermore, based

on this data we estimate an adequate-contact matrix which is used in mathematical models to

determine age-dependent forces of infection.

Our results show that the population is divided mainly into two blocks of mixing, school

children and adults. Adults mix with a wider range of age groups than school children and

teenagers. Moreover, the adequate-contact matrix demonstrates that the probability of disease

transmission is higher for children than for adults, possibly due to the long duration of contacts

at schools. Therefore, one implication of our results is that if there is an epidemic outbreak,

closing schools could be a potentially efficient control strategy.

2 SOCIAL NETWORKS

Recently, considerable interest has been concentrated in determining the effect that social

networks can have on understanding the spread of disease. Social networks try to explain the

linkages among social entities and the implications of these linkages. The concept of a network

emphasizes the fact that each individual has ties to other individuals, each of whom in turn
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is tied to a few, some or many others. Using a network model approach in which individuals

are the nodes and their contacts are the links, we show how data on interactions of a synthetic

population can be translated into matrices and the influence of their structure on disease

spread. Individual-based simulation is also being used increasingly to help epidemiological

investigations. In agent-based simulation, the individual entities in the model are represented

directly and possess an internal state and set of behaviors or rules which determine how the

agent’s state is updated from one time-step to the next. Here, we use both of these tools to

examine mixing patterns in disease spread.

3 EPIDEMIOLOGICAL SIMULATION SYSTEM

(EpiSims)

EpiSims is an individual-based system for simulating the spread of disease in a large urban

population (Barret et al. 2005; Chowell et al. 2003; Eubank et al. 2004). The original EpiSims

model was based on the city of Portland, Oregon, in which the simulated movement of more

than 1.6 million individuals was constructed. Information such as demographics and daily

activities for the population were assigned based on the 2000 census data, activity surveys,

their location and their distance to other locations. The city of Portland was mapped into

180,000 physical locations such as households, schools and shopping centers. This information

was used to calculate the number of people at each location at each time in order to estimate

contacts among individuals.
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The simulation determines the contacts among individuals, including identities of those in

contact, the location and duration of the contact, and the nature of the activity. Because for

some locations such as large buildings, thousands of individuals may go to the same location,

EpiSims creates an ad-hoc model for mixing within a location. In this “sub-location” model,

people are assigned to rooms based on activity type. Assignments overlap, so a “worker” may

have contact with a student. EpiSims integrates all this information into a computer model in

order to provide estimates of physical contact patterns for a large human population.

3.1 Population

EpiSims uses a synthetic population that resembles the real population of Portland, Oregon in

the course of carrying out their daily activities over one randomly chosen day. The population

consists of 1,615,860 individuals of ages ranging from 0 to 90 years. Figure 1 shows a histogram

of the age distribution of the population. Portland is somewhat unusual because of the dis-

proportionately large population of young adults, resulting in a double-hump distribution.
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Figure 1: Age distribution of the synthetic population for the city of Portland. The population

consists of 1,615,860 individuals of ages ranging from 0 to 90 years. The population is described

by a double-hump distribution with mean of 34.37 and median of 33.

3.2 Daily Number of Contacts

The social contact network of Portland is implemented as a directed network, where the nodes

represent locations and the directed edges represent movement of individuals between locations.

Each individual in the population is assigned an ID and second-by-second movement of each

person is recorded. The EpiSims social network output includes the total number of contacts

for each individual, the contacts’ IDs, duration of each contact, and the location where each

contact took place.

The population of Portland had a total of 27,613,194 contacts, ranging between 0 to 365

contacts per person per day. The average number of contacts per person in each age group

is shown in figure 2. The average number of people contacted per person can give us an
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estimate of how many secondary cases can potentially acquire infection from one index case.

The average number of contacts generated by the synthetic population of Portland is consistent

with previous studies (Edmunds et al. 1997).
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Figure 2: Average number of contacts per person in age group j.

We estimated the total number of contacts between age groups, Cij , by using each persons’

ID from the Episims output and matching the IDs with their demographic data and expressing

it in a matrix form. The total number of contacts between age groups is illustrated in figure

3. Notice that this matrix is symmetric, so that Cij = Cji for all i and j. Figure 3 shows that

the mixing in the population consists of two blocks of contacts: young individuals (< 20 years)

and adults (> 20 years). We observe a weak coupling between children and adults, possibly

due to child-parent contacts. Notice that adults mix more at random and with a wider range

of age groups than young individuals.

8



Age j

A
ge

 i

Total Number of Contacts per Day 
Between Age Groups

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Figure 3: Total number of contacts Cij between age groups. The mixing among the population

is divided into two blocks of contacts, young individuals (< 20 years) and adults (> 20 years).

We observe a weak coupling between children and adults, possibly due to child-parent contacts.

Notice that adults mix more at random and with a wider range of age groups than young

individuals.

Furthermore, we obtained the average number of daily contacts of a person in age group i

with people in age group j, by dividing the total number of contacts Cij, by the total population

size Ni in age group i. The resulting n × n matrix is defined as γij.

3.3 Duration of Contact

Closeness and duration of contact are important determinants of disease transmission. Surpris-

ingly, none of the models used in the literature to study disease spread have quantified duration

of contact. We used EpiSims output to determined the daily average duration of contact per
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pair.

First, we estimate the total duration of all contacts between age groups, Dij (figure 4).

Notice that this matrix is also symmetric, so that Dij = Dji for all i and j. The duration

of contact between age groups is consistent with the total number of contacts found in figure

3. Second, we estimate the average duration of contact, Tij, by dividing the total duration of

all contacts by the total number of contacts. That is, Tij = (1/24)(Dij/Cij), where Dij is the

total duration of all contacts and Cij is the total number of contacts between age groups. We

divided Tij by 24 to get the average duration of contacts in fractions of a day instead of in hours.
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Figure 4: The total duration Dij of all contacts between age groups.
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4 ESTIMATING THE ADEQUATE-CONTACT

MATRIX

Here we demonstrate how the EpiSims results can be used to estimate an adequate-contact

matrix. The force of infection λi is the relative rate at which susceptibles of age i acquire in-

fection. Homogeneous mixing means that contacts of a person are randomly distributed among

all others in the population. One immediate implication of the assumption of homogeneous

mixing is that the force of infection is same for all ages. However, for heterogeneous mixing,

the forces of infection reflect the age-related differences in the degree of mixing and contact,

within and among age groups.

Empirical evidence of age-related differences in λi have been documented for childhood

infections by Anderson & May (1982, 1991) and Grenfell & Anderson (1985). They estimated

forces of infection as a function of age using serological data or records of case notifications.

These studies suggest that the age-related differences in the force of infection are important

factors in modeling infectious diseases. The most direct evidence against the homogeneous

mixing assumption comes from studies showing that for human diseases the force of infection

λi, tends to increase with age up to about 5-15 years, and then to decrease in later years

(Anderson & May 1991).

The standard method used in mathematical models to take account of age-dependent mixing

patterns of the population is to use a WAIFW (Who Acquires Infection From Whom) matrix

(Anderson & May 1991). The WAIFW matrix describes how individuals mix with other age
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groups. The elements of the WAIFW matrix, βij , represent the rate at which an infective of

age j will infect a susceptible of age i. However, this technique requires knowledge of the forces

of infection, the mixing structure, and the steady states of the endemic disease. Nevertheless,

the forces of infection are estimated using serological data, but this data are often not available

for many diseases (Anderson & May 1991). Furthermore, the pre-judgment of the mixing

structure may be unrealistic, so that the data leads to mixing matrices with negative entries.

Therefore, there is a great need to develop new methods to estimate age-dependent forces of

infection.

We use the social network for the city of Portland to estimate age-dependent forces of

infection and, consequently, adequate-contact matrices. We assume that the population is de-

mographically divided into different age groups that can progress through various infection

stages (Hyman et al. 1999). For this model, we consider 90 age groups and m infection stages.

We define the force of infection λi as the rate of disease transmission from infected people

in all age groups to susceptibles in age group i. That is, λi is the sum of the rate of disease

transmission from all infection stages in all age groups for age groups 1 ≤ j ≤ 91 and infection

stages 1 ≤ k ≤ m, to the susceptible group, Si. This means that a susceptible person in age

group i can get infected by a person in any infection stage in any age group. Thus,

λi =

91
∑

j=1

m
∑

k=1

λijk(t). (1)

Where, λijk is the rate of disease transmission from the infected people Ijk in infection stage

k of age group j to the susceptibles in age group i. We calculate λijk in (1) as the product of

the number of contacts per unit time that each individual in age group i has with age group j;
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the probability of disease transmission per contact between an infected in stage k of age group

j and a susceptible in age group i; and the fraction of those contacts that are infected. That

is,

λijk =




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


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


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


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.

In terms of the EpiSims data, we can define the force of infection λijk as the product of the

average number of contacts, γij ; the probability of disease transmission, which is the product

of the susceptibility (αi) of a susceptible in age group i, the infectivity (ξjk) of an infective in

stage k of age group j, and the probability of transmission Pij based on the average duration

of contacts between age groups i and j; and the fraction of contacts that are infected. That is,

λijk = (γij(t)) (αiξjkPij)
(

Ijk(t)

Nj(t)

)

, (2)

where Ijk is the number of people in infection stage k of age group j and Nj is the size of age

group j.

Let σ be the mean number of transmission events per hour of contact between fully infectious

and fully susceptible people. For events that occur randomly in time, the number of occurrences

in a period of time of length t obeys a Poisson probability law with parameter σt. Thus, the

probability of no occurrences in time interval t is e−σt and the probability of at least one

occurrence is 1− e−σt. Using the mean duration Tij of contacts between a person in age group

i with people in age group j, we assume that the probability of transmission in this time interval
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Tij is given by

Pij = 1 − e−σTij . (3)

Using Equation (3) with σ = 8 and the average durations of contact per pair, Tij , we obtain

the probability of transmission for all age groups (figure 5). Figure 5 gives us the probability

of transmission, Pij , based on the average duration of contacts between age groups. Because

of the larger average durations of contact among people of the same age, the probabilities of

transmission are high along the diagonal for all age groups.
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Figure 5: Probability of transmission Pij between age groups. We observe a high probability

of transmission along the diagonal for all age groups.

Lastly, we define βij as the average number of adequate contacts (a contact that is sufficient

for transmission) between a susceptible in age i with people in age j, which is the product

of the average number of contacts, the susceptibility, the infectivity, and the probability of

disease transmission, that is, βij = γij ∗ αi ∗ ξjk ∗ Pij. Using γij, αi = 1, ξjk = 1, and Pij , we
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estimate an adequate-contact matrix βij (figure 6), for the given social network. For simplic-

ity, we assume in this example that all age groups are equally susceptible (αi = 1), and that

all infected individuals are equally infectious (ξjk), regardless of the infection stage or age group.
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Figure 6: Adequate-contact matrix βij . We observe that children and teenagers have more

adequate contacts than the rest of the population.

The adequate-contact matrix βij (figure 6) is consistent with the two blocks of mixing found

in figure 3. Figure 6 shows that children and teenagers (< 20 years) are more likely to have

adequate-contacts with people of their own age than the rest of the population. The average

number of adequate-contacts for adults is more uniformly distributed across middle aged groups.

We also observe that there is a weak coupling between middle aged adults and children.

The adequate-contact matrix βij can be used to obtain the forces of infection needed in

a mathematical model with age structure. In order to estimate the force of infection for an

specific disease, one would need to estimate the susceptibilities (αi) for each age group, the

15



infectivities (ξjk) and the transmissibility parameter (σ) for the disease.

5 CONCLUSIONS

Contact patterns play an important role in determining the progression of epidemics. We

have introduced a method for obtaining useful information on the mixing patterns of a virtual

population which might lead to the spread of airborne infections. To quantify these patterns

we used the social contact network generated by the epidemic simulation tool, EpiSims. We

argue that mathematical models that use contact matrices based on social networks will be

better able to capture age-specific infection patterns of infectious diseases than models that use

transmission parameters based on homogeneous mixing or ad-hoc assumptions.

Estimating forces of infection is crucial when using models for specific infectious diseases.

The forces of infection determine the rate of disease transmission and are based on the age-

related differences in the degree of mixing and contacts within the population. We used

the average number of contacts and a probability distribution based on the average duration

per contact to estimate an adequate-contact matrix. With the appropriate specification of

disease-related parameters of susceptibility and infectivity, this matrix can be used to estimate

age-dependent forces of infection for any disease.

Our results show that in general there are two main blocks of mixing within the population:

children (< 20 years) and adults (> 20 years). Furthermore, we observe a weak coupling

between children and middle aged adults. The average number of contacts varies among age

groups, however, in general, middle aged adults have more contacts than children and older
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adults.

The adequate-contact matrix in Figure 6 shows that school children are more likely to

become infected than the rest of the population. This may be due to long duration of contacts

children have with other children at school. In contrast, adults interact with a wider range of

age groups, but their duration of contact is shorter.

One limitation of our study is that currently EpiSims does not stratify schools by classrooms

and therefore the probability of having a contact with anyone in each school is the same for

all children. However, children attending elementary schools mix more in their classrooms

with other school children of their own age than with children of other ages. However, the

EpiSims simulation does not take this factor into consideration and thus children are assumed

to mix randomly with other children in their school. The spread of many childhood diseases is

governed by the pattern of contact among children and therefore it is important to incorporate

realistic mixing patterns. While recognizing some of the limitations in the current EpiSims

simulation model, EpiSims represents a potentially powerful resource in the face of an actual

outbreak.

For mathematical models of infectious diseases to be useful in guiding public health policy,

they must consider age-dependent forces of infection. Individual behavior is crucial for the

spread of infectious diseases and predicting disease spread is difficult. Therefore, new tech-

niques such as the one developed here using social networks are needed as alternative tools

when aggregate behavior cannot be applied to the population. The adequate-contact ma-

trix developed here is useful in providing estimates of the age-dependent forces of infection for
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mathematical models. However, much more needs to be known about the interactions between

people that lead to infection before it will be possible to accurately predict an epidemic.

This research has been supported through the Mathematical Modeling and Analysis Group

and the Simulation Science Group at Los Alamos National Laboratory under the Department
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